If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2y^2+6y+20=0
a = -2; b = 6; c = +20;
Δ = b2-4ac
Δ = 62-4·(-2)·20
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-14}{2*-2}=\frac{-20}{-4} =+5 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+14}{2*-2}=\frac{8}{-4} =-2 $
| 6(4w+4)=8(w+7) | | c^2-15c+54=0 | | a^2-11a+28=10 | | B^2+3b+14=12 | | n^2-60=-4n | | 7x+14+4x+3=90 | | 36/x+2=60/49 | | 6x^2=4704 | | 6x-2=5x+25 | | 4y+3y+12=117 | | 6x-2+4x+2=90 | | 4+3y+12=117 | | 23-7r=3r+8 | | 19-3r=2r+4 | | 3y+12+4y=117 | | (5w-4)+46=180 | | (3z)+(z+2)=90 | | Y=-5x15 | | y=3400(2.5)^5 | | 15=k5^2 | | (2y-3)+73=180 | | d+16=3d | | v=63-6v | | x2-10x+450=0 | | 12x^2+23x=-5 | | 4x+8x=9-6x= | | 2x-9=6+3x | | 10(z-10)=-40 | | 18x=24-x+9 | | -8(-3x-2)=24x+15 | | 36=2x-10+6 | | 4k=288 |